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Abstract

Wetlands are known for their water filtration (or purification) function. Although dif-

ferent wetland types differ in their filtration capacity, they are usually aggregated

together in economic valuation studies. Here, we explicitly separate the valuation of

the suspended sediment and phosphorus (P) filtration services of the four major wet-

land types—bogs, fens, marshes and swamps—found in southern Ontario, Canada.

The areal extents of the four wetland types are derived from the Canadian Wetland

Inventory (CWI) progress map, while the sediment accretion rate is used as the key

variable regulating the suspended sediment and P filtration functions. Based on avail-

able literature data, we assess the relationship of the sediment accretion rate to wet-

land size. Because only weak positive correlations are found, we assign a mean

(average) sediment accretion rate to each wetland type. The sediment accretion rates

are combined with mean soil P concentrations to estimate Pretention rates by the

wetlands. The replacement cost method is then applied to valuate the sediment and

P filtration services. The unit values for both sediment and P retention decrease in

the order: marshes > bogs ≈ swamps > fens. The total value of sediment plus phos-

phorus removal by all wetlands in southern Ontario amounts to $4.2 ± 2.9 billion per

year, of which about 80% is accounted for by swamps. We further assess the costs

of different options to offset the additional P loading generated in a hypothetical sce-

nario whereby all wetlands are converted to agriculture. The results demonstrate that

replacing the P filtration function of existing wetlands with conventional land man-

agement and water treatment solutions is not cost-effective, hence reinforcing the

importance of protecting existing wetlands.
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1 | INTRODUCTION

Wetlands, which are among the most productive terrestrial ecosystems,

provide huge economic benefits through a variety of functions (Gallant

et al., 2020). Among these, their hydrological (e.g., flood control), bio-

geochemical (e.g., nutrient retention) and ecological (e.g., nursery plants)

functions deliver socio-economic benefits known as ecosystem services

(Aziz & Van Cappellen, 2020). Differences in hydrological and geomor-

phological characteristics distinguish the various wetland types

(Warner & Rubec, 1997; Table 1) that, in turn, results in variable provi-

sioning of ecosystem services (Turner et al., 2000).

Wetlands have long been recognized for their key function of fil-

tering pollutants out from water (Gopal & Ghosh, 2008). Increased

sediment loads and nutrient enrichment are major threats to the qual-

ity of aquatic ecosystems (Dordio et al., 2008; Fennessy et al., 2004).

Therefore, the role of wetlands in improving water quality is a primary

argument for their preservation and restoration across the world

(Bring et al., 2020; Dordio et al., 2008). Freshwater wetlands trap sed-

iment and sequester nutrients (Craft & Casey, 2000) and filter water

through physical (sedimentation), chemical (adsorption, precipitation,

chelation) and biological (plant uptake) processes (Fennessy

et al., 2004; Kadlec & Wallace, 2009; Kidd et al., 2015; Reddy

et al., 1999; Settlemyre & Gardner, 1977).

Sediment deposition depends on wetland type with some types

more efficiently retaining sediment than others (Bruland, 2008; Loaiza &

Findlay, 2008). The sediment filtering effectiveness also depends on

watershed size, land use and the wetland's connectivity to the stream

and groundwater network (Craft & Casey, 2000). Sediment accumula-

tion in wetlands is heavily affected by human activity in the watershed.

For example, in the Murray–Darling Basin in Australia sedimentation

rates doubled after European settlement and are now 80 times higher

than the mean rate in the Late Holocene (Gell et al., 2009).

Sediment accretion is the net balance between sediment deposi-

tion and resuspension (Neubauer et al., 2002), and an important indi-

cator of the functioning of restored wetlands (Takekawa et al., 2010).

It is influenced by, among other things, the amount of suspended

material delivered to the wetland, the composition and distribution of

vegetation, flooding and waterlogging patterns, depth and bottom

morphology and biomass production (Cahoon & Turner, 1989;

Goodman et al., 2007; Jarvis, 2010). Sediment accretion rates for wet-

lands, however, are often difficult to estimate and data are relatively

sparse (Loaiza & Findlay, 2008).

Through sediment retention, wetlands can be helpful in mitigating

excess nutrients and pollutants (Mitsch & Gossilink, 2000). Hence, a

wetland's sediment accretion rate is a critical parameter regulating

water quality improvement (Bhomia et al., 2015; Gustavson &

Kennedy, 2010). Wetlands remove phosphorus (P) from the water

through physical and biological processes (Reddy et al., 1999). Phos-

phorus may accumulate in sediments by settling of allochthonous par-

ticulate P and autochthonous biomass P, the precipitation of aqueous

TABLE 1 Major wetland types and their characteristics (from National Wetlands Working Group, 1997; Smith et al., 2007; Zoltai &
Vitt, 1995)

Attribute

Wetland type

Marshes Swamps Bogs Fens

Definition Shallow water areas that are

mostly grasslands, can be

freshwater or saltwater,

amount of water in a marsh

can change seasonally or

with tide

Slow moving streams, rivers or

isolated low areas with

more open and deeper

water than marshes

Peat lands raised or level with

surrounding terrain;

unaffected by runoff or

groundwater from

surrounding; receive water

from precipitation; water

table is at or slightly below

surface

Peat land with fluctuating

water table at surface,

water channels enter in and

water seeps through peat

Soil Low mineral soil but

substantial content of

organic matter and nutrient

rich

Poorly drained and water

logged soil but nutrient rich

Low nutrient soils, peat is

waterlogged, poorly

oxygenated or devoid of

oxygen

Solis have higher

concentration of minerals

than bogs and are nutrient

rich

Moisture

regime

Hydric to very hydric Hygric to hydric Subhygric to hygric Hygric to hydric

pH 5.2–6.4 5.9–6.1 3.5–3.6 4–6.2

Vegetation Freshwater marshes contain

soft stemmed and non-

woody plants, for example,

grasses and shrubs,

saltwater marshes have

grasses, reeds, and rushes

Have woody shrubs and trees

rather than grasses and

herbaceous vegetation

May be treed or treeless,

usually covered with

Sphagnum spp. and shrubs

which can survive in humid

and nutrient poor

conditions

Wetter fens are dominated by

graminoid, bryophytes,

sedge, rushes and moss

vegetation, drier fens are

dominated by trees as black

spruce and shrubs

Morphology Channel, coastal, shore,

estuarine, kettle, stream,

floodplain, and so on

Basin, flat, spring, stream,

shore, peat margin, and so

on

Basin, blanket, domed, flat,

floating, mound, and so on

Basin, channel, floating,

feather, spring, stream, and

so on
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P with metal cations, plus P sorption to mineral and organic substrates

(Mitsch & Gossilink, 2000). Wetlands generally trap phosphorus

although sometimes they may release aqueous P under anoxic condi-

tions (Johnes et al., 2020). While uptake by vegetation can temporally

remove P from water, P in accreted sediments represents the long-

term sink in wetlands (Mitsch & Gossilink, 2000). Therefore, the sedi-

ment accretion rate is the key parameter used to estimate P retention

in wetlands (Griffiths & Mitsch, 2020).

Wetlands are complex and diverse ecosystems, and therefore val-

uation of their ecosystem services is challenging. Economic valuation

of some services relies on perceived benefits and people's prefer-

ences, which can vary significantly. Thus, there is no standard valua-

tion framework as yet to value ecosystem services generated from

different wetland types (Lambert, 2003). Nonetheless, studies imply

that, in many areas of the world, ecosystem services have been declin-

ing due to draining of wetlands (Zedler, 2003). Since 1900, 50% of

wetland areas have been lost worldwide. In southern Ontario, Canada,

about 68% of wetlands have been converted to other uses since 1980

(Ducks Unlimited Canada, 2010). These huge losses in part reflect a

lack of recognition of the economic value of the ecosystem services

provided by wetlands (Gustavson & Kennedy, 2010).

The economic valuation of wetland ecosystem services can help

inform a balanced assessment of the importance of ecosystems for

human wellbeing and the economy (Gleason et al., 2008). Wetlands

are described as the kidneys of the landscape because of the chemical

and hydrological processes they perform (Barbier et al., 1997). Most

wetland services are public goods and their consumption is non-

excludable. Despite being the only ecosystems with an international

treaty calling for their protection (the Ramsar Convention), the degra-

dation of wetlands continues to be exacerbated by ignorance about

the values of their ecosystem services and, in particular, that of their

non-market environmental services (Ajibola, 2012).

The values of ecosystem services generated by different wetland

types are expected to vary. This is certainly true for the services that

are closely linked to sediment retention dynamics (Loaiza &

Findlay, 2008). However, in most watershed-scale economic valuations

of ecosystem services, the same unit value for the water filtration ser-

vice is assigned to all wetland types (Anielski & Wilson, 2010; Hotte

et al., 2009). The purpose of this paper is to present a valuation frame-

work for the filtration services for suspended sediment and phosphorus

that explicitly distinguishes between the broad categories of wetlands.

The framework is applied to southern Ontario, a region characterized

by intensive agriculture that is home to roughly one third of Canada's

population. To our knowledge, this is the first study that separately val-

uates the water filtration functions of different wetland types.

2 | MATERIALS AND METHODS

2.1 | Southern Ontario

The study area comprises the most southerly Mixedwood Plains

Ecozone in Ontario, Canada (Figure 1). It is the country's region most

affected by human activity (Taylor et al., 2014) and covers 5.33 million

hectares, that is, 4.9% of Ontario's total surface. The region experi-

ences high population growth, urban development and intensive farm-

ing. Agriculture is presently the dominant land use with natural

vegetation reduced to 3% of its historic area. Aquatic ecosystems

have deteriorated due to sediment loading and pollution from inten-

sive agriculture, including excess nitrogen (N) and P (Taylor

et al., 2014). Wetland area has declined by more than 70% since

European settlement (c.1800). Southern Ontario is completely

mapped in the Canadian Wetland Inventory (CWI). Based on the

Southern Ontario Land Resource Information System (SOLRIS) land

use data (MNR, 2008), the areas of the four major wetland type are:

bogs (0.85%), fens (0.58%), marshes (11.72%) and swamps (86.85%;

Table 2). The total area of all wetlands is 896 149 hectares.

2.2 | Valuation methodology

The water filtration services (i.e., sediment and P retention) are valu-

ated separately for each of the four wetland types by applying the

general valuation framework of Turner et al. (2000) illustrated in

Figure 2. The sediment and phosphorus accretion rates are used to

quantify the water filtration services. We determine the mean sedi-

ment and phosphorus accretion rates for each wetland type (see

Section 2.2.1) to link the wetland functions and processes with the

ecosystem services provided. The wetland value functions are then

calculated with Equations (1) and (2):

Vsi ¼100�Ri �Ai �SRC ð1Þ

where Vsi is the total value (in $ per year) of sediment retention by

the i-th wetland type, Ri is the mean sediment accretion rate (cm/year)

of the i-th wetland type, Ai is the total surface area of the i-th wetland

type in southern Ontario (ha), and SRC is the sediment removal cost

(in $ per m3); and:

Vpi ¼0:1�Ri �Ai �Di �Pri �PRC ð2Þ

where Vpi is the total value (in $ per year) of phosphorus retention by

the i-th wetland type, Di is the mean soil density (g/cm3) in the i-th

wetland type, Pri is the mean phosphorus soil concentration (mg/kg)

in the i-th wetland type, and PRC is the phosphorus removal

cost ($/kg).

2.2.1 | Sediment accretion rates

We relied on literature data to estimate representative sediment

accretion rates of the different wetland types. The two methods com-

monly applied to measure sediment accretion data are mass balancing

and geochemical tracers. The mass balancing method involves moni-

toring suspended matter inflow to and outflow from a wetland. Geo-

chemical tracer analysis involves the isotopic dating of sediment cores

AZIZ AND VAN CAPPELLEN 3 of 15
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F IGURE 1 Wetland types in southern Ontario, Canada. The area in grey is the selected/study region (MNR, 2008)

TABLE 2 Economic valuation of sediment and phosphorus (P) filtration services by the four major wetland types in southern Ontario

Parameters

Wetland types

Bog Fen Marsh Swamp

Area, A (ha) 7623 5241 104 991 778 294

Area (%) 0.85 0.58 11.72 86.85

Sediment accretion rate (cm/year) 0.23 ± 0.1/0.03 (10a) 0.14 ± 0.1/0.03 (9a) 0.36 ± 0.2/0.05 (14a) 0.22 ± 0.1/0.02

(16a)

Sediment retention rate (m3/ha/year) 23 ± 10 14 ± 10 36 ± 20 22 ± 10

P content in soil (mg/kg) 1110 ± 730

(Fennessy

et al., 2004)

975 ± 390

(Fennessy

et al., 2004)

920 ± 440 (Bruland &

Richardson, 2006;

Fennessy et al., 2004)

900 ± 370

(Fennessy

et al., 2004)

P retention rate (kg/ha/year) 44.7 ± 35 23.9 ± 19 57.9 ± 42 34.6 ± 21

Sediment retention value, Vsi ($/ha/year) 3910 ± 2470 2380 ± 2020 6120 ± 4410 3740 ± 2415

P retention value, Vpi ($/ha/year) 850 ± 885 455 ± 480 1100 ± 1105 660 ± 600

Total sediment retention value (106 � $/year) 30 ± 19 13 ± 11 645 ± 465 2910 ± 1880

Total P retention value (�106 $/year) 6.5 ± 7 2.4 ± 2.5 115 ± 116 513 ± 466

Note: Unit values ($/ha/year) for sediment retention (Vsi) and phosphorus retention (Vpi) are computed with Equations (1) and (2). Average sediment removal

costs of $170 ± 78/m3 and $19 ± 13/kg are used for sediment and phosphorus, respectively. A constant dry soil bulk density of 1.75 mg/cm3 is assumed for

all soils. The soil P concentrations are those reported by Fennessy et al. (2004) based on a meta-analysis of soil chemistry data of Ohio wetlands carried out

by the U.S. Environmental Protection Agency. The total sediment retention and total P retention values are then obtained by multiplying the total surface

area (A) of each wetland type in southern Ontario with the corresponding unit values for sediment and P retention (Vsi, Vpi). All error estimates in the table

are standard deviations (SDs), except for sediment accretion rates where standard errors (SEs) are also given (value after/symbol).
aSample size.

4 of 15 AZIZ AND VAN CAPPELLEN
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(Demissie & Fitzpatrick, 1992). In radiometric dating, radionuclides are

used as chronological markers. The two natural radionuclides that are

most frequently employed are 210Pb and 14C (Church et al., 1987;

Walker et al., 2007). Additional artificial radionuclides (137Cs and 14C)

released into the environment by nuclear weapon testing and the in

situ deployment of geochemical markers are further helping to date

sediment and soil sequences in wetlands (Le Roux & Marshall, 2011).

Different measurement methods often yield different rates of

sediment accretion. For example, short-term deployments of tracer

pads for a few years tend to give higher rates of sediment accretion

compared to long term dating methods (e.g., using 137Cs and 210Pb)

because short-term measurements do not account for shallow subsi-

dence within the top layer of sediment (Ensign et al., 2014). In our

analysis, most of the values listed in Tables A1–A4 were taken from

studies that applied long-term measurement techniques (Church

et al., 1987; Craft, 2007; Neubauer et al., 2002).

We investigated whether the sediment accretion rates in the dif-

ferent types of wetlands are significantly correlated with the wet-

land surface area (Figure A1). While we found positive correlations,

these ranged statistically from insignificant to weak, in part because

of the limited number of rates that could be obtained from the litera-

ture. Hence, in the valuation calculations, we assigned a constant

sediment accretion rate to each wetland type, which was calculated

as the arithmetic mean of the values in Tables A1–A4. Note that the

majority of the values used to compute the arithmetic means were

taken from studies on wetlands in the United States (see

Tables A1–A4).

2.2.2 | Phosphorus retention

The total P concentration in wetland soils typically declines with

increasing depth (Craft & Chiang, 2002; Fisher & Reddy, 2010).

Below 5–10 cm, the concentration tends to stabilize, indicating

that P turnover processes have ceased (Wang et al., 2008).

Therefore, we used mean values of the total P concentrations

measured on soil samples taken at depth of at least 10 cm as

representative for long-term P retention in a wetland (Pinder

et al., 2014). The mean total P soil concentrations are then mul-

tiplied by the estimated sediment accretion rates to calculate P

retention rates (Equation 2).

3 | RESULTS AND DISCUSSION

3.1 | Sediment retention

Most sediment accretion rates fall in the range 0.1–0.5 cm/year

(Tables A1–A4 and Figure A1). Fens tend to have the lowest sediment

accretion rates, marshes the highest. For each wetland type, a relatively

weak positive correlation is observed between the sediment accretion

rate and the wetland surface area. The positive correlations may reflect

enhanced trapping of sediment in larger wetlands, because of longer

hydraulic residence times and more efficient depocenters, similar to

reservoirs (Maavara et al., 2015). The average sediment accretion rates

decrease in the order marshes > bogs ≈ swamps > fens. For the prelim-

inary valuations presented here, we used the arithmetic mean accretion

rate of each of the wetland types to compute the annual sediment and

P retentions (Table 2). The mean rates are calculated by averaging the

individual accretion rates, which are extracted from the literature and

listed in Table A1–A4. Admittedly, the use of a constant mean sediment

accretion rate per wetland type is a strong simplification and represents

a source of uncertainty in the economic valuation of the filtration func-

tions. Future work should explore in more detail the variability of sedi-

ment accretion rates in wetland systems in order to refine the

assessment of their role in sediment retention.

3.2 | Phosphorus retention

The average total P concentrations given in Table 2 are mainly those

reported by Fennessy et al. (2004) for soil depths of 10 cm in wet-

lands from Ohio. The latter wetlands are assumed to be reasonable

analogues for southern Ontario, as the two agriculture-intensive

regions exhibit similar landscapes, climate and cropland P balances

(Bruulsema et al., 2011). Sites include forest and shrub vegetation for

swamps, depressional, mainstream and headwaters for marshes, and

meadows and calcareous wetlands for fens. Concentrations for

another 15 marshes within the Painter Creek Watershed in Minnesota

(USA) were also included in the calculation of the mean P retention in

marshes in Table 2 (Bruland & Richardson, 2006). Reported average

dry bulk densities of wetlands in Ontario and Alberta are as follows:

1.49 (bogs), 1.54 (fens), 2.0 (marshes) and 1.57 g/cm3 (swamps;

Redding & Devito, 2005). However, for consistency, we systematically

F IGURE 2 A framework for valuation of ecosystem services from different wetland types (modified from Turner et al., 2000)

AZIZ AND VAN CAPPELLEN 5 of 15
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imposed a dry bulk density of 1.75 g/cm3, because this is the value

used by Fennessy et al. (2004) to estimate the total P concentrations

shown in Table 2.

Existing studies generally point to the efficient retention of total

P by wetlands. For example, a mass balance study of the Hidden Val-

ley wetland, Ontario, found that 50% of total phosphorus is trapped

by the wetland (Shane et al., 2001). However, for the same wetland

the export of bioavailable P (i.e., dissolved orthophosphate) was 22%

higher than the corresponding input. Thus, in-wetland transformation

processes can significantly alter the chemical speciation and, hence,

the bioavailability of P, not unlike those caused by in-reservoir pro-

cesses (Van Cappellen & Maavara, 2016).

The average P retention rates used here vary by a factor of

three between the lowest (fens) and highest (marshes) values

(Table 2). Our average rates fall in the mid-range of values observed

in a variety of wetlands (0.1–50 kg P/ha/year; Craft & Casey, 2000;

Craft & Richardson, 1993; Dunne & Reddy, 2005; Dunne et al.,

2005). A similar range of retention rates of 1–58 kg P/ha/year has

been reported for constructed wetlands (CWs; Johannesson

et al., 2011), as well as higher values, 50–70 kg P/ha/year, for the

Old Woman Creek marsh in the western basin of Lake Erie (Mitsch

et al., 1989; Shane et al., 2001). The latter research also concluded

that the restoration of one-fourth of the original Old Woman Creek

marsh area alone could reduce P loading to the western basin of

Lake Erie by 25%–30%.

Overall, P retention rates in wetlands are highly variable across

landscapes. Here, relatively high mean values are used because the

wetlands of southern Ontario are all located in agricultural water-

sheds and thus receive high P loads, which in turn results in higher

retention rates than for non-agricultural watersheds

(Johnston, 1991; Riemersma et al., 2006). The high standard devia-

tions in Table 2 imply that the mean P retention rates yield prelimi-

nary, order of magnitude, estimates of the values of the

corresponding service.

3.3 | Wetland value functions (Vsi,Vpi)

To determine the unit values of the filtration services, we used the

average cost for sediment removal and disposal (SRC = $170 ± 78 per

cubic meter) compiled from data from 10 stormwater management

facilities in Ontario (Aziz, 2018). The SRC estimate thus reflects local

practices and costs. Similarly, the total phosphorus removal cost (PRC

= $19±13 per kg P) is based on the historic performance and costing

of 12 water pollution control plants (WPCP), one wastewater treat-

ment centre (WWTC) and a sewage treatment plant (STP), all located

in Ontario (Aziz, 2018). Hence, the PRC estimate also reflects local

practices and socio-economic conditions. The use of locally based cost

values is key to reducing uncertainties in ecosystem services valuation

studies, as opposed to relying on the transfer of values obtained in

studies carried out in other locations or context (Aziz & Van

Cappellen, 2020). Note that the costs are adjusted using the inflation

calculator of Bank of Canada, and expressed in 2016 equivalent Cana-

dian dollars (CAD).

The unit values for sediment and P retention are calculated as the

products of the corresponding cost and retention rate values

(Table 2). The unit values for sediment and P retention follow the

same relative trend as a function of wetland type (Figure 3). The com-

bined unit values ($/ha/year) for the sediment plus P filtration service

increase in the order of fens (2835 ± 2075), swamps (4400 ± 2490),

bogs (4760 ± 2625) and marshes (6765 ± 4435). The relatively large

standard deviations on the unit values are in line with the large ranges

in unit values typically reported in ecosystem services valuation stud-

ies (Aziz, 2018). Consequently, relative differences in valuation results

for given services tend to be more meaningful than absolute differ-

ences. Thus, we tentatively conclude that marshes are the most valu-

able wetlands with respect of their water filtration service, and fens

the least.

All our filtration unit values significantly exceed previous esti-

mates. For example, a study of Ontario's Lake Simcoe basin's natural

F IGURE 3 Unit values (±SD) of
sediment and P retention in the four
wetland types in southern Ontario (error
bars show the standard deviations of the
mean values)

6 of 15 AZIZ AND VAN CAPPELLEN
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capital used a value of $466/ha/year (2016 CAD) for the water filtra-

tion service. This value was deduced from a statistical analysis of the

potential increase in water treatment costs due to reduction in wet-

land cover in the United States (Wilson, 2008a). Anielski and

Wilson (2009) proposed a very similar water filtration unit value of

$452/ha/year (in CAD 2016) across all wetlands types based on a

meta-analysis for freshwater wetlands. Another study of ecosystem

services in the Greenbelt surrounding the Greater Toronto Area

(Wilson, 2008b) assigned a single water filtration unit value of $566/

ha/year (CAD 2016). This value was derived from estimates of the

potential increase in water treatment costs due to a decrease in forest

cover. At the global scale, wetlands have been assigned an even lower

value of $259/ha/year (CAD 2016) for their water filtration service

(Schuyt & Brander, 2004).

The large discrepancies in unit values between our and other

studies illustrates the lack of a unified approach in the valuation of the

water filtration service of wetlands, which in turn may cause ambigui-

ties and misunderstandings. These discrepancies emphasize the need

to clearly outline the basis of the cost estimates. Our estimates are

the highest, because they require that the full capacity to trap sedi-

ment and P by the existing wetlands be conserved and accommo-

dated entirely by improved conservation practices and built

infrastructure. That is, we valuate the water filtration service of wet-

lands by matching the original benefits (see also Breaux et al., 1995;

Lambert, 2003). Other approaches, including those in the studies

mentioned above, estimate the downstream increase in treatment

costs that would result from the loss of the existing natural retention

capacity. These costs, however, are attenuated by in-stream dilution,

retention and transformation processes and therefore only represent

a fraction of the value of the lost ecosystem service.

From a sustainable management perspective, the high values of

the sediment and phosphorus filtration functions must be assessed in

conjunction with the many other ecosystem services provided by wet-

lands and the interlinkages between these services. In a worst case

scenario, a high sediment trapping caused by excessive sediment load-

ing to a wetland may result in ecological degradation, for example by

causing habitat instability and loss (Sileshi et al., 2020). Similarly, a

high phosphorus filtration efficiency can lead to the undesirable

eutrophication of a wetland. In the long run, these negative impacts

may even cause a reduction in the sediment and phosphorus filtration

functions themselves. Thus, when using the estimated values of the

filtration functions to inform environmental decision making, the finite

filtration capacities and resilience of the affected ecosystems need to

be considered.

3.4 | Total wetland filtration service value

The unit values for the water filtration service provided by each wet-

land type are applied to the respective wetland areas in southern

Ontario to obtain the total values of phosphorus and sediment reten-

tion by all wetlands (Table 2). These total values are strongly depen-

dent on the relative surface areas covered by the different types of

wetlands in southern Ontario. For instance, even though the unit

values of swamps are approximately half those of marshes, swamps

dominate the total value because they make up most (87%) of the

total wetland area in the region (Figure 4). The total value of water fil-

tration service (sediment plus P removal) performed by all wetland

types in southern Ontario amounts to $4.2 ± 2.9 billion per year (CAD

2016). Furthermore, the value of sediment retention by wetlands is

about six times higher than that of phosphorus retention.

3.5 | Offsetting P retention by existing wetlands

Phosphorus is the ultimate limiting nutrient in streams and lakes in

and around southern Ontario (Schindler, 2012). The only method that

has so far proven successful in controlling eutrophication of the

F IGURE 4 Total value of sediment
and phosphorus removal from water for
the four wetland types in southern
Ontario (error bars show standard
deviations of the mean values)
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region's lakes, in particular Lake Erie and Lake Ontario, is to reduce P

inputs (Schindler, 2012). To address the resurgence of algal blooms in

Lake Erie, the United States and Canada have committed to reduce P

inputs to the lake by 40% from the year 2008 baseline, which means

an annual reduction of 200 metric tonnes of P from the Canadian side

(Hanief & Laursen, 2019).

For the cost-effectiveness analyses, we assessed the cost of

replacing wetlands' P retention capacity under a scenario where all

existing wetlands are converted to agriculture. Using the P retention

rates of the four wetland types and their areas, the total annual P

retention by wetlands in southern Ontario is close to 30 000 tonnes

(Table 2). The additional P load from converting wetlands to agricul-

tural land was calculated using the average P export rates for row

crops, small grains, forage and pasture from local and regional studies

(Donahue, 2013; Jeje, 2006; Shaver et al., 1994; Winter, 1998). Using

an estimated composite delivery rate of 0.52 ± 0.28 kg P ha�1 year�1,

the additional P load is then 466 ± 251 t P/year. Therefore, the total

P loading from wetland loss and additional agricultural P is 30420

± 11 990 t P/year. We now consider three alternatives to offset this

excess P load: (1) best management practices (BMPs), (2) CWs and

(3) wastewater treatment plant (WWTP) upgrades. The cost of con-

verting 2 ha of each wetland type plus that of converting all wetlands

to agriculture is estimated using these three alternatives (Table 3).

3.5.1 | Best management practices

A generally accepted cost for removing 1 kg P by completed BMPs

projects in southern Ontario is $400/year (CAD 2009). This includes

the cost of the BMP implementation and project management

(Marcano, 2015). When accounting for inflation, the value in 2016 is

$447 per kg of P removal per year. The annual total cost of offsetting

the lost P retention via BMPs then equals about $13 billion (Table 3).

3.5.2 | Constructed wetlands

Kynkäänniemi et al. (2013) report that newly constructed wetlands

retain 69 ± 36 kg/ha/year of total phosphorus TP, based on 2 years

of operation. Using this retention rate, the area of constructed wet-

lands required to offset the increased P load is 440846 ± 288 255 ha,

or about 50% of the existing (natural) wetland area. The annual cost

of operating a functional wetland of size 1.125 ha in Embrun, eastern

Ontario, with an estimated lifespan of 30 years, is $7420 (CAD 2016).

This cost is based on interest on capital investment, operation and

maintenance cost, annual depreciation and loss of crop yield on the

land (Tousignant et al., 1999). Scaling the cost to the entire area of

constructed wetlands required then yields a total cost of $2.9 billion

(Table 3).

3.5.3 | WWTPs upgrades

A cost–benefit analysis of phosphorus in the Grand River watershed,

Ontario, suggests that, if all the WWTPs are upgraded in the water-

shed, it will cost $5475 to remove 1 kg of P (CAD 2016;

Hanna, 2015). This cost does not include the optimization of opera-

tion of current processes in the upgrading option. Using this cost,

WWTPs become the most expensive option to offset the lost P from

conversion of wetlands to agriculture: $164 billion per year (Table 3).

The results in Table 3 indicate that the options for phosphorus

removal considered are not cost effective when compared to the P

retention service values of the existing wetlands in Table 2. The least

expensive option is constructed wetlands, however it requires that

land is made available to install the new wetlands. The areas of con-

structed wetlands required to counteract the extra P loads generated

by the loss of 1 ha of bog, fen, marsh and swamp are 0.62, 0.28, 0.41

and 0.91 ha, respectively. The required area of constructed wetlands

is almost equal in the case of marshes because of the very similar P

retention rates.

4 | CONCLUSIONS

This study presents a first valuation of the sediment and P water fil-

tration services of wetlands in southern Ontario. The estimates are

based on mean sediment accretion rates for different wetland types

as the master variable regulating the water filtration efficiency for

suspended sediment and P. The unit values of the water filtration ser-

vices of the four wetland types in southern Ontario increase in the

order: marsh > bog ≈ swamp > fen. Hence, marshes are the most

valuable wetland type for water filtration. Our cost-effectiveness

TABLE 3 Costs of three interventions—Best management practices (BMPs), constructed wetlands (CWs), waste water treatment plants
upgrades (WWTPUs)—To offset P released from the loss of 1 ha of wetland from the four types, as well as from the loss of all existing
wetland area

Alternatives

Cost (�103) $/year to offset excess P from loss of 1 ha of wetland
Cost (billion $/year) to offset excess P from loss of all
wetlandsBog Fen Marsh Swamp

BMPs 19.2 ± 8 8.7 ± 6 27.9 ± 17 13.2 ± 7 13.40 ± 5

CWs 4.1 ± 2.8 1.9 ± 1.7 6.0 ± 4.9 2.8 ± 2.1 2.90 ± 1.2

WWTPUs 236.0 ± 102 106.8 ± 83 342.2 ± 213 1611.5 ± 84 164.0 ± 69

Note: The total existing wetland area retains 29 944 ± 12 659 t P/year.
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analysis further shows that it would be very costly to replace the exis-

ting wetlands' water filtration services by improved land and nutrient

management and manmade infrastructure. Further work should refine

the valuation estimates presented here by more precisely delineating

the relationships between wetland size and sediment accretion rates,

and by accounting for the hydrological connectivity of wetlands

across the landscape as well as the variability of concentration, specia-

tion and mobility of sedimentary phosphorus. In addition, the filtration

functions assessed here are part of a much larger set of ecosystem

services provided by wetlands.
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APPENDIX A.

The sediment accretion rates summarized in Tables A1–A4 are plot-

ted against the wetland size in Figure A1. The observed scatter

reflects differences in site-specific characteristics within each wet-

land type (e.g., surrounding land use, recharge source water, dis-

charge pathways, wetland morphology and vegetation). In the data

set most of the fens are less than 10 ha in area, the bogs less than

100 ha. Marshes and swamps are the only wetland types that exceed

100 ha in size in southern Ontario. The frequency distributions of

the sediment accretion rates are shown in Figure A2. Because of the

absence of clear distribution patterns and limited data, the arithmetic

mean value for each wetland type is used in the valuation

calculations.

TABLE A1 Sediment accretion rates
for bogs

Bog name Area Accretion rate (cm/year) Reference

Wylde Lake Bog 460.72 ha (cwi) 0.059 ± 0.001a Shiller (2013)

Marcell S-2 Bog 3.2 ha 0.24 Wieder et al. (1994)

Big Run Bog 15 ha 0.31 Wieder et al. (1994)

Tub Run Bog 23 ha 0.23 Wieder et al. (1994)

Cranberry Bog 1 65 ha 0.055 Kadlec and Robbins (1984)

Cranberry Bog 2 65 ha 0.23 Kadlec and Robbins (1984)

Alfred Bog 4000 0.05a Bird and Hale Limited (1984)

Burns Bog 4000 ha 0.42 Biggs (1976)

Sifton Bog 41.6 ha 0.18 Le Roux and Marshall (2011)

Mer Bleue Bog 2800 ha 0.21 Talbot et al. (2010)

Note: Wylde Lake Bog is located in Luther marsh, Grand River watershed and area is obtained from

Canadian wetland inventory (CWI).
aResults are calculated for long time period (more than 300 years) and are not used in our analysis.

TABLE A2 Sediment accretion rates for fens

Fen name Area Accretion rate (cm/year) Reference

Drosera Fen, Yosemite National Park 5.03 ha 0.39 ± 0.15 Drexler et al. (2015)

Porcupine Fen, Yosemite National Park 0.98 ha 0.16 ± 0.02 Drexler et al. (2015)

Kiln Fen, Sagehen basin 2.2 ha 0.08 ± 0.04 Bartolome et al. (1990)

Two field East Fen 0.8 ha 0.05 ± 0.009 Bartolome et al. (1990)

West Fen 0.1 ha 0.03 ± 0.02 Bartolome et al. (1990)

Bagno Bruch 39 ha 0.13 Fia kiewicz-Kozie et al. (2014)

Bagno Mikołeska 5 ha 0.16 Fia kiewicz-Kozie et al. (2014)

Abeille fen 3.5 0.15 Van Bellen et al. (2013)

LG1 fen, Quebec 20 0.12 Beaulieu-Audy et al. (2009)
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TABLE A3 Sediment accretion rates for marshes

Marsh name Area (ha) Accretion rate (cm/year) Reference

Hank's marsh 438.84 0.28 ± 0.03a Graham et al. (2005)

Upper Klamath NWR 3484 0.54 Graham et al. (2005)

Squaw Point 133 0.42 ± 0.03 Graham et al. (2005)

Corte Madera Marsh 121 0.4 ± 0.07 Callaway et al. (2013)

Barataria basin marsh 4780 0.65 Hatton et al. (1983)

Dyke Marsh 37.5 0.31 Elmore et al. (2015)

Sweet Hall marsh 401 0.53 ± 0.11 Neubauer et al. (2002)

Great Marsh, Delaware 6880b 0.5 Church et al. (1987)

Ogeechee marsh, Georgia, USA 700 0.21 Loomis and Craft (2010)

Altamaha marsh 3700 0.12 Loomis and Craft (2010)

Satilla marsh 1700 0.23 Loomis and Craft (2010)

Jug Bay marsh Maryland 607c 0.5 Khan and Brush (1994)

Gleason marsh 85c 0.27 Darke and Megonigal (2003)

Walkerton marsh 16c 0.12 Darke and Megonigal (2003)

aAverage of 210Pb and 137Cs models.
bArea taken from US National Wetland Inventory.
chttp://dnr2.maryland.gov/wildlife/Documents/NaturalAreas/JugBay.pdf (Department of Natural Resources Maryland).

TABLE A4 Sediment accretion rates for swamps

Swamp name Area Accretion rate (cm/year) Reference

Tamarack swamp 1618 ha 0.14 Wieder et al. (1994)

Cranesville Swamp 809 ha 0.19 Wieder et al. (1994)

Black swamp Arkansas 1804 haa 0.28 Hupp and Morris (1990)

Walden swamp 26 haa 1.26 Meadowlands Environmental Research Institute (2011)

Eight Day swamp 7.85 haa 0.83 Meadowlands Environmental Research Institute (2011)

Backswamp, Alabama 1163 haa 0.5 ± 0.1 cm/year Kidd et al. (2015)

Okefenokee Swamp 0.08 cm/year Craft et al. (2008)

Louisiana swamp 0.49 ± 0.11 Conner and Day (1991)

Bluebonnet swamp 42 0.41 Sanders (1998)

Heron Pond swamp 30 0.8 Warren (2001)

Pointe au Chene swamp 231 0.4 Rybczyk et al. (1998)

Buttonland swamp 1600 0.25 Demissie and Fitzpatrick (1992)

La Union swamp 10 0.052 Urquhart (1999)

Tuckean Swamp 5000 0.22 Taffs and Heijnis (2008)

Nariva Swamp 6234b 0.31 Ramcharan (2004)

Loboi Swamp 150 0.1 Ashley et al. (2004)

aArea from U.S. National Wetland Inventory.
bhttp://www.ema.co.tt/new/images/guides/AppendixB.pdf.
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F IGURE A1 Sediment accretion rates (cm/year) versus wetland size (as surface area in ha) for the four wetland types

F IGURE A2 Frequency distributions of the sediment accretion rate data for the four wetland types. The data are given in Tables A1–A4
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